空氣微粒計(jì)數(shù)器原理及發(fā)展介紹
更新時(shí)間:2015-11-09 點(diǎn)擊次數(shù):3718次
空氣微粒計(jì)數(shù)器是利用丁達(dá)爾現(xiàn)象來檢測(cè)粒子。丁達(dá)爾效應(yīng)是用John Tyndall的名字命名的,通常是膠體中的粒子對(duì)光線的散射作用引起的。一束明亮的光照在空氣或霧中的灰塵上,所產(chǎn)生的散射就是丁達(dá)爾現(xiàn)象。
當(dāng)折射率變化時(shí),光線就會(huì)發(fā)生散射。這就意味著在液體中,汽泡對(duì)光線的散射作用和固體粒子是一樣的。米氏理論描述了粒子對(duì)光的散射作用。
光的散射情況會(huì)隨著粒子尺寸的變化而變化。在粒子計(jì)數(shù)器中,米氏理論zui重要的結(jié)果以及它對(duì)光散射的預(yù)測(cè)都與之相關(guān)。當(dāng)粒子尺寸比光的波長要小得多的時(shí)候,光散射主要是朝著正前方(圖1a)。而當(dāng)粒子尺寸比光波長要大得多的時(shí)候,光散射則主要朝直角和后方方向散射。光可以看做是沿著傳播方向進(jìn)行垂直振蕩的波。這一振蕩方向就是所謂的偏振。入射光的偏振非常重要。在以前的例子里,光的散射是在入射光的偏振平面內(nèi)進(jìn)行測(cè)量的。
粒子尺寸在5μm時(shí)的散射情況類似;而具有偏振現(xiàn)象,粒子尺寸在0.3μm時(shí)的散射情況有很大不同。由于用對(duì)數(shù)表示,變化不到十倍的,都看不到了。散射光的強(qiáng)度隨著頻率的改變而變化:較短的波長意味較強(qiáng)的散射。在其他條件都相同的情況下,藍(lán)光的散射強(qiáng)度大約是紅光的10倍。大部分粒子計(jì)數(shù)器采用的都是近紅外或紅色激光;直到zui近,這還都是zui符合經(jīng)濟(jì)效益的選擇。藍(lán)色氣體和半導(dǎo)體激光器價(jià)格都很貴;而且半導(dǎo)體激光器的使用壽命也很短。
空氣微粒計(jì)數(shù)器在傳感器的出口處有一個(gè)真空裝置,把空氣經(jīng)過傳感器抽走。而空氣中的粒子則將激光散射。散射光又會(huì)被后面的聚光鏡聚焦到光學(xué)探測(cè)器上,隨后把光轉(zhuǎn)換成電壓信號(hào),并且進(jìn)行放大和濾波。此后,這個(gè)信號(hào)從模擬的轉(zhuǎn)換成數(shù)字信號(hào),并且由微處理器對(duì)它進(jìn)行分類。微處理器也會(huì)通過接口將計(jì)數(shù)器連接到控制數(shù)據(jù)收集系統(tǒng)上。
激光氣體激光器發(fā)明于1960年,而半導(dǎo)體激光器發(fā)明于1962年。開始時(shí)這些激光器很貴,但是隨著它們變成具有經(jīng)濟(jì)效益時(shí),在粒子計(jì)數(shù)器中,就用氣體激光取代了白光。而到了20世紀(jì)80年代末,在絕大多數(shù)場(chǎng)合下,更便宜的半導(dǎo)體激光器又取代了氣體激光器。用于粒子計(jì)數(shù)的激光器有兩種:一種是氣體激光器,如氦氖激光器和氬離子激光器;另外就是半導(dǎo)體激光器。氣體激光器能夠生產(chǎn)強(qiáng)烈的單色光,有時(shí)甚至是偏振光。氣體激光器產(chǎn)生準(zhǔn)直高斯光束,而半導(dǎo)體激光器則產(chǎn)生出一個(gè)小的發(fā)散點(diǎn)光源,通常發(fā)散光有兩個(gè)不同的軸,并且總是出現(xiàn)多種模式。由于發(fā)散光具有多軸性,半導(dǎo)體激光器通常都有一個(gè)橢圓形的輸出,這帶來了一定的挑戰(zhàn),也帶來了一定的優(yōu)勢(shì)。不同軸的散射光意味著要么勉強(qiáng)接受這一橢圓形的輸出,要么設(shè)計(jì)一套復(fù)雜而昂貴的光學(xué)鏡來做補(bǔ)償。另一方面,橢圓光束很適合用于某些應(yīng)用,利用長軸,可以得到更好的覆蓋范圍。
總之,氦氖激光器的輸出“直接可用”,無需增加任何光學(xué)元件。要想產(chǎn)生類似于氦氖激光器的光束,從半導(dǎo)體激光器出來的光必須經(jīng)過透鏡聚焦,這會(huì)導(dǎo)致光能的損耗。但是,半導(dǎo)體激光器的成本低、體積小、工作電壓低、功耗小,成為粒子計(jì)數(shù)器的*選擇。
在要求高靈敏度的應(yīng)用中,氦氖激光器可以用于開式腔模式[6],產(chǎn)生很大的功率。因?yàn)闃颖疽ㄟ^光學(xué)空腔諧振器,當(dāng)粒子濃度較高時(shí),激光會(huì)中斷,所以此時(shí)這種類型的激光不適用。
入口噴嘴進(jìn)入粒子計(jì)數(shù)器的入口樣本對(duì)計(jì)數(shù)器的分辨率起著至關(guān)重要的作用。入口有兩種類形:一種是扁平的(寬10mm,高0.1mm),另一種是內(nèi)徑為2-3mm的圓形。入口噴嘴為扁平的時(shí),通常激光束是一條與噴嘴同軸的窄線。而入口噴嘴為圓形時(shí),激光束則通常與入射口的軸線大致成直角。粒子會(huì)通過一個(gè)非常狹窄,強(qiáng)度很高的激光面。每種類型的噴嘴各有優(yōu)缺點(diǎn)。扁平噴嘴出來的氣流速度相當(dāng)均勻,它通過激光束中zui強(qiáng)而且zui均勻的部分,因此精度zui高。但是,扁平噴嘴的橫截面小,意味著要求真空度高于圓形噴嘴,這樣會(huì)增加能耗(這點(diǎn)非常重要,特別是在采用電池供電時(shí))。扁平噴嘴的制造比較復(fù)雜,價(jià)格也較高,而且它和激光之間的配合也是一個(gè)問題。圓形噴嘴比較簡(jiǎn)單,因?yàn)樗臋M截面較大,對(duì)于速度相同的氣流,對(duì)真空度的要求也較低,所以當(dāng)空氣吸入時(shí),能耗也較小。相對(duì)于扁平噴嘴,氣流速度較低意味著每個(gè)粒子散射的光也更多。圓形噴嘴的缺點(diǎn)在于它會(huì)降低氣流的均勻性,而且激光束的功率不是均勻的;光束會(huì)變粗,因而精度較低。
光學(xué)聚焦元件粒子會(huì)朝各個(gè)方向散射光,其中zui主要的還是正前方。隨著粒子的變大,會(huì)有更多的光朝后面以及沿直角方向散射。光學(xué)聚焦元件則將光收集起來并且聚焦到探測(cè)器上,防止出現(xiàn)激光干擾。光學(xué)聚焦器件會(huì)嘗試只收集包含有用信號(hào)的光,而將無用光排除在外。雜散反射光會(huì)導(dǎo)致噪音,通常會(huì)在基線上產(chǎn)生一定的偏移,這會(huì)影響儀器的靈敏度。反射鏡:凹面鏡可以用來聚集光線并且把光線聚焦到探測(cè)器上。凹面鏡作為燈光的反射鏡,可以將從它的焦點(diǎn)發(fā)出的光反射回焦點(diǎn)。這是zui常用的光學(xué)聚焦元件,可以用它做出小巧而且成本低的傳感器。
透鏡:用于粒子計(jì)數(shù)器的透鏡通常都是成對(duì)出現(xiàn)的半球鏡。它們可以有效地將圖象(散射光)從一個(gè)焦點(diǎn)傳輸?shù)搅硪粋€(gè)焦點(diǎn)(光電探測(cè)器)。在許多傳感器中,也在透鏡的另一端用一個(gè)反射鏡來收集光線。非成像粒子計(jì)數(shù)器:非成像粒子計(jì)數(shù)器不需要使用任何光學(xué)聚焦元件。光電探測(cè)器緊靠著試樣的入口和激光,收集散射光。小型傳感器(例如手持式傳感器)往往包含光學(xué)元件,它含有一個(gè)非成像元件。
光電探測(cè)器光電探測(cè)器每接收到一個(gè)光子就會(huì)產(chǎn)生電荷,從而將入射光轉(zhuǎn)換成電脈沖。 散射光的數(shù)量會(huì)隨著粒子尺寸的增大而增多,同時(shí)散射光子也會(huì)到達(dá)光電探測(cè)器,于是,產(chǎn)生了與粒子尺寸成正比的電流脈沖。光電二極管:光電二極管就是一個(gè)p-n結(jié)。當(dāng)能量足夠的光子撞上二極管時(shí),就會(huì)產(chǎn)生一個(gè)可移動(dòng)的電子和一個(gè)帶正電的空穴。這些電荷會(huì)引起光電流,隨后進(jìn)行放大、濾波和分類處理。雪崩光電二極管:雪崩光電二極管[7]是一個(gè)半導(dǎo)體光電倍增管。光子能引起雪崩光電二極管發(fā)生電子雪崩;可以用來檢測(cè)光子并進(jìn)行計(jì)數(shù)。處理電路信號(hào)處理電路對(duì)光電探測(cè)器產(chǎn)生的信號(hào)進(jìn)行放大和濾波。
高頻干擾的頻率遠(yuǎn)遠(yuǎn)高于粒子產(chǎn)生的信號(hào),可以用低通濾波器把它濾掉。經(jīng)過濾波后的信號(hào),由一系列的脈沖組成,脈沖的高度與粒子尺寸有關(guān)。 現(xiàn)在對(duì)這些信號(hào)進(jìn)行分類,用脈沖幅度分析儀進(jìn)行模擬數(shù)字轉(zhuǎn)換。在轉(zhuǎn)換成數(shù)字信號(hào)之后,可以這些經(jīng)過分類的脈沖進(jìn)行計(jì)數(shù),zui后送往控制系統(tǒng)。
當(dāng)折射率變化時(shí),光線就會(huì)發(fā)生散射。這就意味著在液體中,汽泡對(duì)光線的散射作用和固體粒子是一樣的。米氏理論描述了粒子對(duì)光的散射作用。
光的散射情況會(huì)隨著粒子尺寸的變化而變化。在粒子計(jì)數(shù)器中,米氏理論zui重要的結(jié)果以及它對(duì)光散射的預(yù)測(cè)都與之相關(guān)。當(dāng)粒子尺寸比光的波長要小得多的時(shí)候,光散射主要是朝著正前方(圖1a)。而當(dāng)粒子尺寸比光波長要大得多的時(shí)候,光散射則主要朝直角和后方方向散射。光可以看做是沿著傳播方向進(jìn)行垂直振蕩的波。這一振蕩方向就是所謂的偏振。入射光的偏振非常重要。在以前的例子里,光的散射是在入射光的偏振平面內(nèi)進(jìn)行測(cè)量的。
粒子尺寸在5μm時(shí)的散射情況類似;而具有偏振現(xiàn)象,粒子尺寸在0.3μm時(shí)的散射情況有很大不同。由于用對(duì)數(shù)表示,變化不到十倍的,都看不到了。散射光的強(qiáng)度隨著頻率的改變而變化:較短的波長意味較強(qiáng)的散射。在其他條件都相同的情況下,藍(lán)光的散射強(qiáng)度大約是紅光的10倍。大部分粒子計(jì)數(shù)器采用的都是近紅外或紅色激光;直到zui近,這還都是zui符合經(jīng)濟(jì)效益的選擇。藍(lán)色氣體和半導(dǎo)體激光器價(jià)格都很貴;而且半導(dǎo)體激光器的使用壽命也很短。
空氣微粒計(jì)數(shù)器在傳感器的出口處有一個(gè)真空裝置,把空氣經(jīng)過傳感器抽走。而空氣中的粒子則將激光散射。散射光又會(huì)被后面的聚光鏡聚焦到光學(xué)探測(cè)器上,隨后把光轉(zhuǎn)換成電壓信號(hào),并且進(jìn)行放大和濾波。此后,這個(gè)信號(hào)從模擬的轉(zhuǎn)換成數(shù)字信號(hào),并且由微處理器對(duì)它進(jìn)行分類。微處理器也會(huì)通過接口將計(jì)數(shù)器連接到控制數(shù)據(jù)收集系統(tǒng)上。
激光氣體激光器發(fā)明于1960年,而半導(dǎo)體激光器發(fā)明于1962年。開始時(shí)這些激光器很貴,但是隨著它們變成具有經(jīng)濟(jì)效益時(shí),在粒子計(jì)數(shù)器中,就用氣體激光取代了白光。而到了20世紀(jì)80年代末,在絕大多數(shù)場(chǎng)合下,更便宜的半導(dǎo)體激光器又取代了氣體激光器。用于粒子計(jì)數(shù)的激光器有兩種:一種是氣體激光器,如氦氖激光器和氬離子激光器;另外就是半導(dǎo)體激光器。氣體激光器能夠生產(chǎn)強(qiáng)烈的單色光,有時(shí)甚至是偏振光。氣體激光器產(chǎn)生準(zhǔn)直高斯光束,而半導(dǎo)體激光器則產(chǎn)生出一個(gè)小的發(fā)散點(diǎn)光源,通常發(fā)散光有兩個(gè)不同的軸,并且總是出現(xiàn)多種模式。由于發(fā)散光具有多軸性,半導(dǎo)體激光器通常都有一個(gè)橢圓形的輸出,這帶來了一定的挑戰(zhàn),也帶來了一定的優(yōu)勢(shì)。不同軸的散射光意味著要么勉強(qiáng)接受這一橢圓形的輸出,要么設(shè)計(jì)一套復(fù)雜而昂貴的光學(xué)鏡來做補(bǔ)償。另一方面,橢圓光束很適合用于某些應(yīng)用,利用長軸,可以得到更好的覆蓋范圍。
總之,氦氖激光器的輸出“直接可用”,無需增加任何光學(xué)元件。要想產(chǎn)生類似于氦氖激光器的光束,從半導(dǎo)體激光器出來的光必須經(jīng)過透鏡聚焦,這會(huì)導(dǎo)致光能的損耗。但是,半導(dǎo)體激光器的成本低、體積小、工作電壓低、功耗小,成為粒子計(jì)數(shù)器的*選擇。
在要求高靈敏度的應(yīng)用中,氦氖激光器可以用于開式腔模式[6],產(chǎn)生很大的功率。因?yàn)闃颖疽ㄟ^光學(xué)空腔諧振器,當(dāng)粒子濃度較高時(shí),激光會(huì)中斷,所以此時(shí)這種類型的激光不適用。
入口噴嘴進(jìn)入粒子計(jì)數(shù)器的入口樣本對(duì)計(jì)數(shù)器的分辨率起著至關(guān)重要的作用。入口有兩種類形:一種是扁平的(寬10mm,高0.1mm),另一種是內(nèi)徑為2-3mm的圓形。入口噴嘴為扁平的時(shí),通常激光束是一條與噴嘴同軸的窄線。而入口噴嘴為圓形時(shí),激光束則通常與入射口的軸線大致成直角。粒子會(huì)通過一個(gè)非常狹窄,強(qiáng)度很高的激光面。每種類型的噴嘴各有優(yōu)缺點(diǎn)。扁平噴嘴出來的氣流速度相當(dāng)均勻,它通過激光束中zui強(qiáng)而且zui均勻的部分,因此精度zui高。但是,扁平噴嘴的橫截面小,意味著要求真空度高于圓形噴嘴,這樣會(huì)增加能耗(這點(diǎn)非常重要,特別是在采用電池供電時(shí))。扁平噴嘴的制造比較復(fù)雜,價(jià)格也較高,而且它和激光之間的配合也是一個(gè)問題。圓形噴嘴比較簡(jiǎn)單,因?yàn)樗臋M截面較大,對(duì)于速度相同的氣流,對(duì)真空度的要求也較低,所以當(dāng)空氣吸入時(shí),能耗也較小。相對(duì)于扁平噴嘴,氣流速度較低意味著每個(gè)粒子散射的光也更多。圓形噴嘴的缺點(diǎn)在于它會(huì)降低氣流的均勻性,而且激光束的功率不是均勻的;光束會(huì)變粗,因而精度較低。
光學(xué)聚焦元件粒子會(huì)朝各個(gè)方向散射光,其中zui主要的還是正前方。隨著粒子的變大,會(huì)有更多的光朝后面以及沿直角方向散射。光學(xué)聚焦元件則將光收集起來并且聚焦到探測(cè)器上,防止出現(xiàn)激光干擾。光學(xué)聚焦器件會(huì)嘗試只收集包含有用信號(hào)的光,而將無用光排除在外。雜散反射光會(huì)導(dǎo)致噪音,通常會(huì)在基線上產(chǎn)生一定的偏移,這會(huì)影響儀器的靈敏度。反射鏡:凹面鏡可以用來聚集光線并且把光線聚焦到探測(cè)器上。凹面鏡作為燈光的反射鏡,可以將從它的焦點(diǎn)發(fā)出的光反射回焦點(diǎn)。這是zui常用的光學(xué)聚焦元件,可以用它做出小巧而且成本低的傳感器。
透鏡:用于粒子計(jì)數(shù)器的透鏡通常都是成對(duì)出現(xiàn)的半球鏡。它們可以有效地將圖象(散射光)從一個(gè)焦點(diǎn)傳輸?shù)搅硪粋€(gè)焦點(diǎn)(光電探測(cè)器)。在許多傳感器中,也在透鏡的另一端用一個(gè)反射鏡來收集光線。非成像粒子計(jì)數(shù)器:非成像粒子計(jì)數(shù)器不需要使用任何光學(xué)聚焦元件。光電探測(cè)器緊靠著試樣的入口和激光,收集散射光。小型傳感器(例如手持式傳感器)往往包含光學(xué)元件,它含有一個(gè)非成像元件。
光電探測(cè)器光電探測(cè)器每接收到一個(gè)光子就會(huì)產(chǎn)生電荷,從而將入射光轉(zhuǎn)換成電脈沖。 散射光的數(shù)量會(huì)隨著粒子尺寸的增大而增多,同時(shí)散射光子也會(huì)到達(dá)光電探測(cè)器,于是,產(chǎn)生了與粒子尺寸成正比的電流脈沖。光電二極管:光電二極管就是一個(gè)p-n結(jié)。當(dāng)能量足夠的光子撞上二極管時(shí),就會(huì)產(chǎn)生一個(gè)可移動(dòng)的電子和一個(gè)帶正電的空穴。這些電荷會(huì)引起光電流,隨后進(jìn)行放大、濾波和分類處理。雪崩光電二極管:雪崩光電二極管[7]是一個(gè)半導(dǎo)體光電倍增管。光子能引起雪崩光電二極管發(fā)生電子雪崩;可以用來檢測(cè)光子并進(jìn)行計(jì)數(shù)。處理電路信號(hào)處理電路對(duì)光電探測(cè)器產(chǎn)生的信號(hào)進(jìn)行放大和濾波。
高頻干擾的頻率遠(yuǎn)遠(yuǎn)高于粒子產(chǎn)生的信號(hào),可以用低通濾波器把它濾掉。經(jīng)過濾波后的信號(hào),由一系列的脈沖組成,脈沖的高度與粒子尺寸有關(guān)。 現(xiàn)在對(duì)這些信號(hào)進(jìn)行分類,用脈沖幅度分析儀進(jìn)行模擬數(shù)字轉(zhuǎn)換。在轉(zhuǎn)換成數(shù)字信號(hào)之后,可以這些經(jīng)過分類的脈沖進(jìn)行計(jì)數(shù),zui后送往控制系統(tǒng)。